Cart (Loading....) | Create Account
Close category search window
 

Filterbank optimization with convex objectives and the optimality of principal component forms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Akkarakaran, S. ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA ; Vaidyanathan, P.P.

This paper proposes a general framework for the optimization of orthonormal filterbanks (FBs) for given input statistics. This includes as special cases, many previous results on FB optimization for compression. It also solves problems that have not been considered thus far. FB optimization for coding gain maximization (for compression applications) has been well studied before. The optimum FB has been known to satisfy the principal component property, i.e., it minimizes the mean-square error caused by reconstruction after dropping the P weakest (lowest variance) subbands for any P. We point out a much stronger connection between this property and the optimality of the FB. The main result is that a principal component FB (PCFB) is optimum whenever the minimization objective is a concave function of the subband variances produced by the FB. This result has its grounding in majorization and convex function theory and, in particular, explains the optimality of PCFBs for compression. We use the result to show various other optimality properties of PCFBs, especially for noise-suppression applications. Suppose the FB input is a signal corrupted by additive white noise, the desired output is the pure signal, and the subbands of the FB are processed to minimize the output noise. If each subband processor is a zeroth-order Wiener filter for its input, we can show that the expected mean square value of the output noise is a concave function of the subband signal variances. Hence, a PCFB is optimum in the sense of minimizing this mean square error. The above-mentioned concavity of the error and, hence, PCFB optimality, continues to hold even with certain other subband processors such as subband hard thresholds and constant multipliers, although these are not of serious practical interest. We prove that certain extensions of this PCFB optimality result to cases where the input noise is colored, and the FB optimization is over a larger class that includes biorthogonal FBs. We also show that PCFBs do not exist for the classes of DFT and cosine-modulated FBs

Published in:

Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 1 )

Date of Publication:

Jan 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.