By Topic

Efficient capacitance extraction computations in wavelet domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Soveiko, Nick ; Dept. of Electron., Carleton Univ., Ottawa, Ont., Canada ; Nakhla, M.S.

A new approach is presented for efficient capacitance extraction. This technique utilizes wavelet bases and is kernel independent. The main benefits of the proposed technique are as follows: (1) it takes a full advantage of the multiresolution analysis and gives accurate total charge on a conductor without obtaining an accurate solution for the charge density per se; (2) the method employs an extremely aggressive thresholding algorithm and compresses the stiffness matrix to an almost diagonal sparse matrix; and (3) construction of the stiffness matrix is performed iteratively, which facilitates easy and simple control of convergence and provides means of trading accuracy for speed. The proposed method has computational cost of O(N), versus O(N3) for conventional methods. The proposed algorithm has a major impact on the speed and accuracy of physical interconnect parameter extraction with speedup reaching 103 for even moderately sized problems

Published in:

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on  (Volume:47 ,  Issue: 5 )