By Topic

A framework for automatic landmark identification using a new method of nonrigid correspondence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Hill ; Kestra Ltd., Skipton, UK ; C. J. Taylor ; A. D. Brett

A framework for automatic landmark identification is presented based on an algorithm for corresponding the boundaries of two shapes. The auto-landmarking framework employs a binary tree of corresponded pairs of shapes to generate landmarks automatically on each of a set of example shapes. The landmarks are used to train statistical shape models, known as point distribution models. The correspondence algorithm locates a matching pair of sparse polygonal approximations, one for each of a pair of boundaries by minimizing a cost function, using a greedy algorithm. The cost function expresses the dissimilarity in both the shape and representation error (with respect to the defining boundary) of the sparse polygons. Results are presented for three classes of shape which exhibit various types of nonrigid deformation

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:22 ,  Issue: 3 )