Cart (Loading....) | Create Account
Close category search window
 

A computationally efficient Doppler compensation system for underwater acoustic communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sharif, B.S. ; Dept. of Electr. & Electron. Eng., Newcastle upon Tyne Univ., UK ; Neasham, J. ; Hinton, O.R. ; Adams, A.E.

A Doppler compensation system is presented which is suitable for high-data-rate acoustic communication between rapidly moving platforms such as autonomous underwater vehicles. The proposed approach provides a generic preprocessor to conventional adaptive receiver structures with only a marginal increase in computational load and hardware cost. The preprocessor employs a novel Doppler estimation technique and efficient sample rate conversion to remove Doppler shift induced by platform velocity and acceleration. Performance predicted by simulation is compared to that of sea trials of a prototype communication system in the North Sea. Successful communication is demonstrated at 16 kbit/s with a transmitting platform moving at up to /spl plusmn/2.6 m/s.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:25 ,  Issue: 1 )

Date of Publication:

Jan. 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.