Cart (Loading....) | Create Account
Close category search window
 

An LDMOS VHF class-E power amplifier using a high-Q novel variable inductor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zirath, H. ; Dept. of Microelectron., Chalmers Univ. of Technol., Goteborg, Sweden ; Rutledge, D.B.

In this paper, an lateral diffused metal-oxide-semiconductor-based very high-frequency class-E power amplifier has been investigated theoretically and experimentally. Simulations were verified by amplifier measurements and a record-high class-E output power was obtained at 144 MHz, which is in excellent agreement with simulations. The key of the results is the use of efficient device models, simulation tools, and the invention of a novel high-Q inductor for the output series resonance network. The latter allows for low losses in the output network and, simultaneously, a wide tuning range for maximum output power or maximum efficiency optimization

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:47 ,  Issue: 12 )

Date of Publication:

Dec 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.