Cart (Loading....) | Create Account
Close category search window

A receding horizon Kalman FIR filter for discrete time-invariant systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wook Hyun Kwon ; Sch. of Electr. Eng., Seoul Nat. Univ., South Korea ; Pyung Soo Kim ; PooGyeon Park

A receding horizon Kalman FIR filter is presented that combines the Kalman filter and the receding horizon strategy when the horizon initial state is assumed to be unknown. The suggested filter is a FIR filter form which has many good inherent properties. It can always be defined irrespective of singularity problems caused by unknown information about the horizon initial state. The suggested filter can be represented in either an iterative form or a standard FIR form. It is also shown that the suggested filter possesses the unbiasedness property and the remarkable deadbeat property irrespective of any horizon initial condition. The validity of the suggested filter is illustrated by numerical examples

Published in:

Automatic Control, IEEE Transactions on  (Volume:44 ,  Issue: 9 )

Date of Publication:

Sep 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.