Cart (Loading....) | Create Account
Close category search window

Online fault detection and isolation of nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chan, C.W. ; Dept. of Mech. Eng., Hong Kong Univ., Hong Kong ; Cheung, K.C. ; Wang, Y. ; Chan, W.C.

This paper describes an online fault detection scheme for a class of nonlinear dynamic systems with modelling uncertainty and inaccessible states. Only the inputs and outputs of the system can be measured. The faults are assumed to be functions of the state, instead of the output and the input of the system. A nonlinear online approximator using dynamic recurrent neural network is utilised to monitor the faults in the system. The construction and the learning algorithm of the online approximator are presented. The stability, robustness and sensitivity of the fault detection scheme under certain assumptions are analysed. An example demonstrates the efficiency of the proposed fault detection scheme

Published in:

American Control Conference, 1999. Proceedings of the 1999  (Volume:6 )

Date of Conference:


Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.