Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Linear SLAM: A linear solution to the feature-based and pose graph SLAM based on submap joining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liang Zhao ; Centre for Autonomous Syst., Univ. of Technol., Sydney, NSW, Australia ; Shoudong Huang ; Dissanayake, G.

This paper presents a strategy for large-scale SLAM through solving a sequence of linear least squares problems. The algorithm is based on submap joining where submaps are built using any existing SLAM technique. It is demonstrated that if submaps coordinate frames are judiciously selected, the least squares objective function for joining two submaps becomes a quadratic function of the state vector. Therefore, a linear solution to large-scale SLAM that requires joining a number of local submaps either sequentially or in a more efficient Divide and Conquer manner, can be obtained. The proposed Linear SLAM technique is applicable to both feature-based and pose graph SLAM, in two and three dimensions, and does not require any assumption on the character of the covariance matrices or an initial guess of the state vector. Although this algorithm is an approximation to the optimal full nonlinear least squares SLAM, simulations and experiments using publicly available datasets in 2D and 3D show that Linear SLAM produces results that are very close to the best solutions that can be obtained using full nonlinear optimization started from an accurate initial value. The C/C++ and MATLAB source codes for the proposed algorithm are available on OpenSLAM.

Published in:

Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on

Date of Conference:

3-7 Nov. 2013