By Topic

Introductory Circuit Analysis Learning From Abstract and Contextualized Circuit Representations: Effects of Diagram Labels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Johnson, A.M. ; Coll. of Technol. & Innovation, Arizona State Univ., Mesa, AZ, USA ; Butcher, K.R. ; Ozogul, G. ; Reisslein, M.

Novice learners are typically unfamiliar with abstract engineering symbols. They are also often unaccustomed to instructional materials consisting of a combination of text, diagrams, and equations. This raises the question of whether instruction on elementary electrical circuit analysis for novice learners should employ contextualized representations of the circuits with familiar components, such as batteries, or employ abstract representations with the abstract engineering terms and symbols. A further question is if text labels in the circuit diagrams would aid these learners. This study examined these research questions with a “2 × 3” experimental design, in which the two forms of representation (abstract or contextualized) were considered under three types of diagram labeling (no labels, static labels, or interactive labels). The design was implemented in an instructional module on elementary circuit analysis for novice learners. Results indicated that abstract representations led to higher near- and far-transfer post-test scores, and that interactive (student-generated) labeling resulted in higher near-transfer scores than either the no-labels or static-labels conditions. These findings suggest that abstract representations promote the development of deep, transferrable knowledge and that generative methods of integration, such as interactive diagram labeling, can facilitate learning with multiple external representations.

Published in:

Education, IEEE Transactions on  (Volume:57 ,  Issue: 3 )