Cart (Loading....) | Create Account
Close category search window

A 150 mW 8:1 MUX and a 170 mW 1:8 DEMUX for 2.4 gb/s optical-fiber communication systems using n-AlGaAs/i-InGaAs HJFET's

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Fujii, M. ; Opto-Electron. Res. Labs., NEC Corp., Ibaraki, Japan ; Keiichi Numata ; Tadashi Maeda ; Tokushima, M.
more authors

An 8:1 multiplexer (MUX) and a 1:8 demultiplexer (DEMUX) for 2.4-Gb/s optical communication systems have been developed using 0.35-/spl mu/m GaAs heterojunction field-effect transistors (FETs). To ensure timing margins, a new timing generator with latches and new clock buffers with cross-coupled inverters have been developed. These large-scale integrations (LSIs) operate at over 2.4 Gb/s with a power consumption of 150 mW (MUX) and 170 mW (DEMUX) at a supply voltage of 0.7 V, and at over 5 Gb/s with power consumption of 200 mW at a supply voltage of 0.8 V.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:6 ,  Issue: 1 )

Date of Publication:

March 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.