Cart (Loading....) | Create Account
Close category search window
 

Simulation Analysis of the Temperature Field in an Induction Launcher

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Li San-Qun ; Shijiazhuang Mech. Eng. Coll., Shijiazhuang, China ; Guan Xiao Cun ; Lei Bin ; Li Zhi-Yuan

Induction coil guns are a class of launchers that utilize electromagnetic energy to promote the armature. During launching, the driving coil and the armature will generate a lot of heat which can make the drive coil and the armature melt, thereby affecting the normal work of the entire induction coil gun. However, it is quite difficult to accurately describe the temperature variation of the induction coil gun because of the complexity of its structure. So, the temperature of the launcher is analyzed using the finite element method in this paper. The launcher temperature simulation model is built using ANSYS software, and the temperature distribution of the drive coil and armature is analyzed using the load transfer method. The simulation results show that, without considering magnetoresistance effect and skin effect, the temperature distribution of the drive coil is uniform; the temperature rise of the armature is mainly on the outer surface and in the tail. Finally, the launcher temperature measurement experimental platform is set up and the temperatures of key points are measured, thereby verifying the simulation results.

Published in:

Plasma Science, IEEE Transactions on  (Volume:41 ,  Issue: 5 )

Date of Publication:

May 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.