By Topic

Performance Analysis and Design of Position-Encoded Microsphere Arrays Using the Ziv-Zakai Bound

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiaoxiao Xu ; Preston M. Green Dept. of Electr. & Syst. Eng., Washington Univ. in St. Louis, St. Louis, MO, USA ; Sarder, P. ; Kotagiri, N. ; Achilefu, S.
more authors

Position-encoded microsphere arrays are a promising technology for identifying biological targets and quantifying their concentrations. In this paper we analyze the statistical performance of these arrays in imaging targets at typical low signal-to-noise ratio (SNR) levels. We compute the Ziv-Zakai bound (ZZB) on the errors in estimating the unknown parameters, including the target concentrations. We find the SNR level below which the ZZB provides a more accurate prediction of the error than the posterior Cramér-Rao bound (PCRB), through numerical examples. We further apply the ZZB to select the optimal design parameters of the microsphere array device and investigate the effects of the experimental variables such as microscope point-spread function. An imaging experiment on microspheres with protein targets verifies the optimal design parameters using the ZZB.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:12 ,  Issue: 1 )