Cart (Loading....) | Create Account
Close category search window
 

Thread Assignment of Multithreaded Network Applications in Multicore/Multithreaded Processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Radojkovic, P. ; Barcelona Supercomput. Center, Univ. Politec. de Catalunya, Barcelona, Spain ; Cakarevic, V. ; Verdu, J. ; Pajuelo, A.
more authors

The introduction of multithreaded processors comprised of a large number of cores with many shared resources makes thread scheduling, and in particular optimal assignment of running threads to processor hardware contexts to become one of the most promising ways to improve the system performance. However, finding optimal thread assignments for workloads running in state-of-the-art multicore/multithreaded processors is an NP-complete problem. In this paper, we propose BlackBox scheduler, a systematic method for thread assignment of multithreaded network applications running on multicore/multithreaded processors. The method requires minimum information about the target processor architecture and no data about the hardware requirements of the applications under study. The proposed method is evaluated with an industrial case study for a set of multithreaded network applications running on the UltraSPARC T2 processor. In most of the experiments, the proposed thread assignment method detected the best actual thread assignment in the evaluation sample. The method improved the system performance from 5 to 48 percent with respect to load balancing algorithms used in state-of-the-art OSs, and up to 60 percent with respect to a naive thread assignment.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 12 )

Date of Publication:

Dec. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.