By Topic

Ensemble Based Real-Time Adaptive Classification System for Intelligent Sensing Machine Diagnostics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Minh Nhut Nguyen ; Dept. of Data Min., Agency for Sci., Technol. & Res. (A*STAR), Singapore, Singapore ; Chunyu Bao ; Kar Leong Tew ; Teddy, S.D.
more authors

The deployment of a sensor node to manage a group of sensors and collate their readings for system health monitoring is gaining popularity within the manufacturing industry. Such a sensor node is able to perform real-time configurations of the individual sensors that are attached to it. Sensors are capable of acquiring data at different sampling frequencies based on the sensing requirements. The different sampling rates affect power consumption, sensor lifespan, and the resultant network bandwidth usage due to the data transfer incurred. These settings also have an immediate impact on the accuracy of the diagnostics and prognostics models that are employed for system health monitoring. In this paper, we propose a novel adaptive classification system architecture for system health monitoring that is well suited to accommodate and take advantage of the variable sampling rate of sensors. As such, our proposed system is able to yield a more effective health monitoring system by reducing the power consumption of the sensors, extending the sensors' lifespan, as well as reducing the resultant network traffic and data logging requirements. We also propose an ensemble based learning method to integrate multiple existing classifiers with different feature representations, which can achieve significantly better, stable results compared with the individual state-of-the-art techniques, especially in the scenario when we have very limited training data. This result is extremely important in many real-world applications because it is often impractical, if not impossible, to hand-label large amounts of training data.

Published in:

Reliability, IEEE Transactions on  (Volume:61 ,  Issue: 2 )