Cart (Loading....) | Create Account
Close category search window
 

Timescale Decoupled Routing and Rate Control in Intermittently Connected Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ryu, J. ; Department of Electrical and Computer Engineering, The University of Texas, Austin, ; Lei Ying ; Shakkottai, S.

We study an intermittently connected network (ICN) composed of multiple clusters of wireless nodes. Within each cluster, nodes can communicate directly using the wireless links. However, these clusters are far away from each other such that direct communication between the clusters is impossible except through “mobile” contact nodes. These mobile contact nodes are data carriers that shuffle between clusters and transport data from the source to the destination clusters. There are several applications of our network model, such as clusters of mobile soldiers connected via unmanned aerial vehicles. Our work here focuses on a queue-based cross-layer technique known as the back-pressure algorithm. The algorithm is known to be throughput-optimal, as well as resilient to disruptions in the network, making it an ideal candidate communication protocol for our intermittently connected network. In this paper, we design a back-pressure routing/rate control algorithm for ICNs. Though it is throughput-optimal, the back-pressure algorithm has several drawbacks when used in ICNs, including long end-to-end delays, large number of potential queues needed, and loss in throughput due to intermittency. We present a modified back-pressure algorithm that addresses these issues. We implement our algorithm on a 16-node experimental testbed and present our experimental results in this paper.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:20 ,  Issue: 4 )

Date of Publication:

Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.