By Topic

OPtimal Synthesis And Normality Of The Maximum Principle For Optimal Control Problems With Pure State Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Frankowska, H. ; Inst. de Math. de Jussieu, Univ. Pierre et Marie Curie (Paris 6), Paris, France ; Mazzola, M.

The objective of the present paper is investigation of the optimal synthesis and normality of the maximum principle for the Mayer optimal control problem under pure state constraints. Such models do arise in many applied areas such as space industry, robotics, drug administration, economy, etc. We express the optimal synthesis using Dini derivatives of an associated cost-to-go function and derive the normal maximum principle from a new Neighboring Feasible Trajectories theorem (NFT). For a state constraint with smooth boundary, NFT theorems imply that under standard assumptions on control system and an inward pointing condition, feasible trajectories depend in a Lipschitz way on the initial states. Some recent counterexamples indicate that, if the state constraint is an intersection of two half spaces in ℝn, surprisingly conclusions of NFT theorems might be no longer valid. We propose here a new inward pointing condition implying a new NFT theorem.

Published in:

Control and Automation (ICCA), 2011 9th IEEE International Conference on

Date of Conference:

19-21 Dec. 2011