By Topic

A General Framework for Transmission with Transceiver Distortion and Some Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wenyi Zhang ; Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China

A general theoretical framework is presented for analyzing information transmission over Gaussian channels with memoryless transceiver distortion, which encompasses various nonlinear distortion models including transmit-side clipping, receive-side analog-to-digital conversion, and others. The framework is based on the so-called generalized mutual information (GMI), and the analysis in particular benefits from the setup of Gaussian codebook ensemble and nearest-neighbor decoding, for which it is established that the GMI takes a general form analogous to the channel capacity of undistorted Gaussian channels, with a reduced "effective" signal-to-noise ratio (SNR) that depends on the nominal SNR and the distortion model. When applied to specific distortion models, an array of results of engineering relevance is obtained. For channels with transmit-side distortion only, it is shown that a conventional approach, which treats the distorted signal as the sum of the original signal part and a uncorrelated distortion part, achieves the GMI. For channels with output quantization, closed-form expressions are obtained for the effective SNR and the GMI, and related optimization problems are formulated and solved for quantizer design. Finally, super-Nyquist sampling is analyzed within the general framework, and it is shown that sampling beyond the Nyquist rate increases the GMI for all SNR values. For example, with binary symmetric output quantization, information rates exceeding one bit per channel use are achievable by sampling the output at four times the Nyquist rate.

Published in:

IEEE Transactions on Communications  (Volume:60 ,  Issue: 2 )