Cart (Loading....) | Create Account
Close category search window
 

Model Predictive Control of an AFE Rectifier With Dynamic References

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Quevedo, D.E. ; Sch. of Electr. Eng. & Comput. Sci., Univ. of Newcastle, Newcastle, NSW, Australia ; Aguilera, R.P. ; Perez, M.A. ; Cortes, P.
more authors

In this paper, a finite control set model predictive controller for closed-loop control of an active front-end rectifier is presented. The proposed method operates in discrete time and does not require additional modulators. The key novelty of the control algorithm presented lies in the way dynamic references are handled. The control strategy is capable of providing suitable references for the source active power and the rectified voltage, without requiring additional control loops. Experimental results show that fast and accurate tracking of dynamic dc voltage and reactive power references can be achieved, while respecting the restrictions on maximum power levels of the rectifier.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 7 )

Date of Publication:

July 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.