Cart (Loading....) | Create Account
Close category search window
 

Effect of Self-Assembled Monolayer (SAM) on the Oxide Semiconductor Thin Film Transistor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Seung-Hwan Cho ; Dept. of Electr. Eng. & Comput. Sci., Seoul Nat. Univ., Seoul, South Korea ; Yong-Uk Lee ; Jeong-Soo Lee ; Kang-Moon Jo
more authors

In this paper, we proposed the self-assembled monolayer (SAM) as a protection layer against plasma and chemically induced damages to the back interface of an oxide semiconductor during the deposition of the passivation layer. When a thin-film transistor (TFT) is passivated with plasma-enhanced chemical-vapor deposition (PECVD) SiOx and solution-based materials, the back interface of the oxide semiconductor could be exposed to plasma and chemically induced damages, respectively. We employed SAMs on the back surface of the oxide semiconductor prior to the passivation process to suppress such damage. The hydrophobic Cl-SAM (3-chloropropyltriethoxysilane) suppressed the degradation in mobility and subthreshold slope (SS) due to ion bombardment during plasma treatment. The hydrophobic CH3-SAM (octyltriethoxysilane) successfully blocked chemically induced damage due to solution-based passivation.

Published in:

Display Technology, Journal of  (Volume:8 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.