By Topic

The Capacity Region of p -Transmitter/ q -Receiver Multiple-Access Channels With Common Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ali Haghi ; ECE Dept., University of Waterloo, Waterloo, Canada ; Reza Khosravi-Farsani ; Mohammad Reza Aref ; Farokh Marvasti

This paper investigates the capacity problem for some multiple-access scenarios with cooperative transmitters. First, a general Multiple-Access Channel (MAC) with common information, i.e., a scenario where p transmitters send private messages and also a common message to q receivers and each receiver decodes all of the messages, is considered. The capacity region of the discrete memoryless channel is characterized. Then, the general Gaussian fading MAC with common information wherein partial Channel State Information (CSI) is available at the transmitters (CSIT) and perfect CSI is available at the receivers (CSIR) is investigated. A coding theorem is proved for this model that yields an exact characterization of the throughput capacity region. Finally, a two-transmitter/one-receiver Gaussian fading MAC with conferencing encoders with partial CSIT and perfect CSIR is studied and its capacity region is determined. For the Gaussian fading models with CSIR only (transmitters have no access to CSIT), some numerical examples and simulation results are provided for Rayleigh fading.

Published in:

IEEE Transactions on Information Theory  (Volume:57 ,  Issue: 11 )