By Topic

Improving Motor Imagery Classification With a New BCI Design Using Neuro-Fuzzy S-dFasArt

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jose-Manuel Cano-Izquierdo ; ETSI Industrial, Universidad Politecnica de Cartagena, Spain ; Julio Ibarrola ; Miguel Almonacid

This paper presents an algorithm based on neural networks and fuzzy theory (S-dFasArt) to classify spontaneous mental activities from electroencephalogram (EEG) signals, in order to operate a noninvasive brain-computer interface. The focus is placed on the three-class problem, left-hand movement imagination, right movement imagination and word generation. The algorithm allows a supervised classification of temporal patterns improving the classification rates of the BCI Competition III (Data Set V: multiclass problem, continuous EEG). Using the precomputed data supplied for the competition and following the rules established there, a new method based on S-dFasArt, along with rule prune and voting strategy is proposed. The results have been compared with other published methods improving their success rates.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:20 ,  Issue: 1 )