By Topic

Communication-Aware Motion Planning in Mobile Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ghaffarkhah, A. ; Dept. of Electr. & Comput. Eng., Univ. of New Mexico, Albuquerque, NM, USA ; Mostofi, Y.

In this technical note, we propose a communication-aware motion planning framework to increase the probability that a robot maintains its connectivity to a fixed station, while accomplishing a sensing task, in realistic communication environments. We use a probabilistic multi-scale model for channel characterization. Using this model, we propose a probabilistic framework for assessing the spatial variations of a wireless channel, based on a small number of measurements. We then show how our channel learning framework can be utilized for devising communication-aware motion planning strategies. We first present communication-aware objective functions that can plan the trajectory of the robot in order to improve its online channel assessment in an environment. We then propose a communication-aware target tracking approach for the case where a fixed station utilizes a robot (or a number of them) to keep track of the position of a moving target. In this approach, probabilistic channel assessment metrics are combined with sensing goals, when controlling the motion, in order to increase the amount of information that the fixed station receives about the target. Finally, we show the performance of our framework, using both real and simulated channel measurements. Overall, our results indicate that networked robotic operations can benefit considerably from our probabilistic channel assessment and its integration with sensing/motion planning.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 10 )