By Topic

Properties of Propagation of Electromagnetic Wave in a Multilayer Radar-Absorbing Structure With Plasma- and Radar-Absorbing Material

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Cheng-Xun Yuan ; Phys. Dept., Harbin Inst. of Technol., Harbin, China ; Zhong-Xiang Zhou ; Zhang, J.W. ; Xiao-Li Xiang
more authors

A multilayer radar-absorbing structure with plasma- and radar-absorbing material (RAM) is established to investigate the stealth mechanisms of the multilayer absorber. The method of impedance transformation with multiple dielectrics is used to analyze the propagation of electromagnetic (EM) waves in the multilayer structure. The dependences of EM waves attenuation on the parameters of the plasma and RAMs are provided. The numerical results indicate that generally speaking, the joint attention effect of RAM and plasma is better than the effect of either RAM or plasma solely. The attenuation of an EM wave in the structure is strongly affected by: a) the characteristics of RAMs; b) the width of the plasma layer; c) the parameters of the outer layer material; d) the electron density of the plasma; and e) the collision frequency between electrons and neutrals. It is demonstrated that detailed numerical analyses are useful in practical applications pertaining to the control of the reflection of EM waves through a multilayer radar-absorbing structure with plasma and RAMs.

Published in:

Plasma Science, IEEE Transactions on  (Volume:39 ,  Issue: 9 )