By Topic

Inferring Network Topologies in Infrastructure as a Service Cloud

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dominic Battré ; Tech. Univ. Berlin, Berlin, Germany ; Natalia Frejnik ; Siddhant Goel ; Odej Kao
more authors

Infrastructure as a Service (IaaS) clouds are gaining increasing popularity as a platform for distributed computations. The virtualization layers of those clouds offer new possibilities for rapid resource provisioning, but also hide aspects of the underlying IT infrastructure which have often been exploited in classic cluster environments. One of those hidden aspects is the network topology, i.e. the way the rented virtual machines are physically interconnected inside the cloud. We propose an approach to infer the network topology connecting a set of virtual machines in IaaS clouds and exploit it for data-intensive distributed applications. Our inference approach relies on delay-based end-to-end measurements and can be combined with traditional IP-level topology information, if available. We evaluate the inference accuracy using the popular hyper visors KVM as well as XEN and highlight possible performance gains for distributed applications.

Published in:

Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM International Symposium on

Date of Conference:

23-26 May 2011