By Topic

Optimizing Floating Point Units in Hybrid FPGAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chi Wai Yu ; Dept. of Comput., Imperial Coll. London, London, UK ; Smith, A.M. ; Luk, W. ; Leong, P.H.W.
more authors

This paper introduces a methodology to optimize coarse-grained floating point units (FPUs) in a hybrid field-programmable gate array (FPGA), where the FPU consists of a number of interconnected floating point adders/subtracters (FAs), multipliers (FMs), and wordblocks (WBs). The wordblocks include registers and lookup tables (LUTs) which can implement fixed point operations efficiently. We employ common subgraph extraction to determine the best mix of blocks within an FPU and study the area, speed and utilization tradeoff over a set of floating point benchmark circuits. We then explore the system impact of FPU density and flexibility in terms of area, speed, and routing resources. Finally, we derive an optimized coarse-grained FPU by considering both architectural and system-level issues. This proposed methodology can be used to evaluate a variety of FPU architecture optimizations. The results for the selected FPU architecture optimization show that although high density FPUs are slower, they have the advantages of improved area, area-delay product, and throughput.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 7 )