By Topic

A Fast-Response Pseudo-PWM Buck Converter With PLL-Based Hysteresis Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yanqi Zheng ; Dept. of Electron. Eng., Chinese Univ. of Hong Kong, Shatin, China ; Hua Chen ; Ka Nang Leung

Hysteresis voltage-mode control is a simple and fast control scheme for switched-mode power converters. However, it is well-known that the switching frequency of a switched-mode power converter with hysteresis control depends on many factors such as loading current and delay of the controller which vary from time to time. It results in a wide noise spectrum and leads to difficulty in shielding electro-magnetic interference. In this work, a phase-lock loop (PLL) is utilized to control the hysteresis level of the comparator used in the controller, while not interfering with the intrinsic behavior of the hysteresis controller. Some design techniques are used to solve the integration problem and to improve the settling speed of the PLL. Moreover, different control modes are implemented. A buck converter with proposed control scheme is fabricated using a commercial 0.35-μ m CMOS technology. The chip area is 1900 μm × 2200 μm. The switching frequency is locked to 1 MHz, and the measured frequency deviation is within ±1%. The measured load transient response between 160 and 360 mA is 5 μ s only.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 7 )