By Topic

PDN Impedance Modeling and Analysis of 3D TSV IC by Using Proposed P/G TSV Array Model Based on Separated P/G TSV and Chip-PDN Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Jun So Pak ; Terahertz Interconnection and Package Laboratory, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea ; Joohee Kim ; Jonghyun Cho ; Kiyeong Kim
more authors

The impedance of a power-distribution network (PDN) in three-dimensionally stacked chips with multiple through-silicon-via (TSV) connections (a 3D TSV IC) was modeled and analyzed using a power/ground (P/G) TSV array model based on separated P/G TSV and chip-PDN models at frequencies up to 20 GHz. The proposed modeling and analysis methods for the P/G TSV and chip-PDN are fundamental for estimating the PDN impedances of 3D TSV ICs because they are composed of several chip-PDNs and several thousands of P/G TSV connections. Using the proposed P/G TSV array model, we obtained very efficient analyses and estimations of 3D TSV IC PDNs, including the effects of TSV inductance and multiple-TSV inductance, depending on P/G TSV arrangement and the number of stacked chip-PDNs of a 3D TSV IC PDN. Inductances related to TSVs, combined with chip-PDN inductance and capacitance, created high upper peaks of PDN impedance, near 1 GHz. Additionally, the P/G TSV array produced various TSV array inductance effects on stacked chip-PDN impedance, according to their arrangement, and induced high PDN impedance, over 10 GHz.

Published in:

IEEE Transactions on Components, Packaging and Manufacturing Technology  (Volume:1 ,  Issue: 2 )