Cart (Loading....) | Create Account
Close category search window
 

Adaptive Droop Resistance Technique for Adaptive Voltage Positioning in Boost DC–DC Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Han-Hsiang Huang ; Dept. of Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chun-Yu Hsieh ; Jie-Yu Liao ; Ke-Horng Chen

In this paper, an adaptive droop resistance (ADR) technique can compensate for the adaptive voltage positioning (AVP) control in a boost dc-dc converter. A loop analysis is derived with the AVP technique to show the effects of the right-half-plane (RHP) zero. When the value of RHP zero is above the equivalent series resistance (ESR) zero, constant output impedance can be guaranteed by the proposed compensation method. Once the value of RHP zero is below five times of ESR zero, the proposed ADR technique can vary the droop resistance to track the variation of the load current to increase the system stability. In case of load current variation, the output impedance is proven constant due to the implementation of the AVP technique in the boost converter. The transient response time is 22 μS when a 200-mA load current step occurs, which is faster than that of a conventional boost converter. Even at heavy loads, the ADR technique can ensure a fast and stable transient response without being affected by the RHP zero. The experimental results demonstrate that the proposed method can increase system stability and guarantee a fast transient response in the design of a boost converter with the AVP technique.

Published in:

Power Electronics, IEEE Transactions on  (Volume:26 ,  Issue: 7 )

Date of Publication:

July 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.