By Topic

Exploiting Virtual Coordinates for Improved Routing Performance in Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Awad, A. ; Fac. of Comput. Sci. & Autom., Ilmenau Univ. of Technol., Ilmenau, Germany ; German, R. ; Dressler, F.

We present the Virtual Cord Protocol (VCP), which exploits virtual coordinates to provide efficient and failure tolerant routing and data management in sensor networks. VCP maintains a virtual cord interconnecting all the nodes in the network and which, operating similar to a Distributed Hash Table (DHT), provides means for inserting data fragments into sensor nodes and retrieving them. Furthermore, it supports service discovery using indirections. VCP uses two mechanisms for finding paths to nodes and associated data items: First, it relies on the virtual cord that always provides a path toward the destination. Second, locally available neighborhood information is exploited for greedy routing. Our simulation results show that VCP is able to find paths close to the shortest path (achieving a stretch ratio of less than 125 percent) with very low overhead. We also extended VCP with data replication mechanisms to improve failure handling. The routing performance of VCP, which clearly outperforms other ad hoc routing protocols such as Dynamic MANET On Demand (DYMO), is similar to other virtual addressing schemes, e.g., Virtual Ring Routing (VRR). However, we improved VCP to handle frequent node failures in an optimized way. The presented results outline the capabilities of VCP to handle such cases more efficiently compared to other protocols. We also compared the capabilities to reliably store and retrieve data in the network to Geographic Hash Tables (GHTs). VCP, in the worst case, performs similar to GHTs, but outperforms this protocol in most cases, especially when complex routing is involved.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:10 ,  Issue: 9 )