By Topic

Within-Die Variation-Aware Dynamic-Voltage-Frequency-Scaling With Optimal Core Allocation and Thread Hopping for the 80-Core TeraFLOPS Processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Dighe, S. ; Intel Labs., Intel Corp., Hillsboro, OR, USA ; Vangal, S.R. ; Aseron, P. ; Kumar, S.
more authors

In this paper, we present measured within-die core-to-core Fmax and leakage variation data for an 80-core processor in 65 nm CMOS and 1) populate a parameterized energy/performance model to determine the most energy-efficient operating point for a workload; 2) examine impacts of per-core clock and power gating on optimal dynamic voltage-frequency-core scaling (DVFCS) operating points; and 3) compare improvements in energy efficiency achievable by variation-aware DVFCS and core mapping on Single-Voltage/Multiple-Frequency (SVMF), Multiple-Voltage/Single-Frequency (MVSF) and Multiple-Voltage/Multiple-Frequency (MVMF) designs. Variation-aware DVFS with optimal core mapping is shown to improve energy efficiency 6%-35% across a range of compute/communication activity workloads. A new dynamic thread hopping scheme boosts performance by 5%-10% or energy efficiency by 20%-60%.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:46 ,  Issue: 1 )