By Topic

Advanced Variance Reduction and Sampling Techniques for Efficient Statistical Timing Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jaffari, J. ; IGNIS Innovation, Inc., Kitchener, ON, Canada ; Anis, M.

The Monte-Carlo (MC) technique is a traditional solution for a reliable statistical analysis, and in contrast to probabilistic methods, it can account for any complicate model. However, a precise analysis that involves a traditional MC-based technique requires many simulation iterations, especially for the extreme quantile points. In this paper, advanced sampling and variance reduction techniques, along with applications for efficient digital circuit timing yield analysis, are studied. Three techniques are proposed: 1) an enhanced quasi-MC-based sampling which generates optimally low-discrepancy samples suitable for yield estimation of digital circuits; 2) an order-statistics based control variate technique that improves the quality of the yield estimations, when a moderate number of samples is needed; and 3) a classical control-variate technique utilized for a variance-reduced critical delay's statistical moment estimation. This solution is shown to be effective even for a very low number of samples.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:29 ,  Issue: 12 )