By Topic

A novel approach to feature selection based on analysis of class regions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Thawonmas ; RIKEN, Inst. of Phys. & Chem. Res., Saitama, Japan ; S. Abe

This paper presents a novel approach to feature selection based on analysis of class regions which are generated by a fuzzy classifier. A measure for feature evaluation is proposed and is defined as the exception ratio. The exception ratio represents the degree of overlaps in the class regions, in other words, the degree of having exceptions inside of fuzzy rules generated by the fuzzy classifier. It is shown that for a given set of features, a subset of features that has the lowest sum of the exception ratios has the tendency to contain the most relevant features, compared to the other subsets with the same number of features. An algorithm is then proposed that performs elimination of irrelevant features. Given a set of remaining features, the algorithm eliminates the next feature, the elimination of which minimizes the sum of the exception ratios. Next, a terminating criterion is given. Based on this criterion, the proposed algorithm terminates when a significant increase in the sum of the exception ratios occurs due to the next elimination. Experiments show that the proposed algorithm performs well in eliminating irrelevant features while constraining the increase in recognition error rates for unknown data of the classifiers in use

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:27 ,  Issue: 2 )