Cart (Loading....) | Create Account
Close category search window
 

Particle filter theory and practice with positioning applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gustafsson, F. ; Dept. of Electr. Eng., Linkoping Univ., Linköping, Sweden

The particle filter (PF) was introduced in 1993 as a numerical approximation to the nonlinear Bayesian filtering problem, and there is today a rather mature theory as well as a number of successful applications described in literature. This tutorial serves two purposes: to survey the part of the theory that is most important for applications and to survey a number of illustrative positioning applications from which conclusions relevant for the theory can be drawn. The theory part first surveys the nonlinear filtering problem and then describes the general PF algorithm in relation to classical solutions based on the extended Kalman filter (EKF) and the point mass filter (PMF). Tuning options, design alternatives, and user guidelines are described, and potential computational bottlenecks are identified and remedies suggested. Finally, the marginalized (or Rao-Blackwellized) PF is overviewed as a general framework for applying the PF to complex systems. The application part is more or less a stand-alone tutorial without equations that does not require any background knowledge in statistics or nonlinear filtering. It describes a number of related positioning applications where geographical information systems provide a nonlinear measurement and where it should be obvious that classical approaches based on Kalman filters (KFs) would have poor performance. All applications are based on real data and several of them come from real-time implementations. This part also provides complete code examples.

Published in:

Aerospace and Electronic Systems Magazine, IEEE  (Volume:25 ,  Issue: 7 )

Date of Publication:

July 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.