By Topic

Three-Dimensional Tissue Deformation Recovery and Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peter Mountney ; He is currently a Ph.D. candidate at Imperial College. ; Danail Stoyanov ; Guang-Zhong Yang

Recent advances in surgical robotics have provided a platform for extending the current capabilities of minimally invasive surgery by incorporating both preoperative and intraoperative imaging data. In this tutorial article, we introduce techniques for in vivo three-dimensional (3-D) tissue deformation recovery and tracking based on laparoscopic or endoscopic images. These optically based techniques provide a unique opportunity for recovering surface deformation of the soft tissue without the need of additional instrumentation. They can therefore be easily incorporated into the existing surgical workflow. Technically, the problem formulation is challenging due to nonrigid deformation of the tissue and instrument interaction. Current approaches and future research directions in terms of intraoperative planning and adaptive surgical navigation are explained in detail.

Published in:

IEEE Signal Processing Magazine  (Volume:27 ,  Issue: 4 )