Cart (Loading....) | Create Account
Close category search window
 

Advanced Level-Set-Based Cell Tracking in Time-Lapse Fluorescence Microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dzyubachyk, O. ; Med. Centre, Depts. of Med. Inf. & Radiol., Erasmus Univ., Rotterdam, Netherlands ; van Cappellen, W.A. ; Essers, J. ; Niessen, W.J.
more authors

Cell segmentation and tracking in time-lapse fluorescence microscopy images is a task of fundamental importance in many biological studies on cell migration and proliferation. In recent years, level sets have been shown to provide a very appropriate framework for this purpose, as they are well suited to capture topological changes occurring during mitosis, and they easily extend to higher dimensional image data. This model evolution approach has also been extended to deal with many cells concurrently. Notwithstanding its high potential, the multiple-level-set method suffers from a number of shortcomings, which limit its applicability to a larger variety of cell biological imaging studies. In this paper, we propose several modifications and extensions to the coupled-active-surfaces algorithm, which considerably improve its robustness and applicability. Our algorithm was validated by comparing it to the original algorithm and two other cell segmentation algorithms. For the evaluation, four real fluorescence microscopy image datasets were used, involving different cell types and labelings that are representative of a large range of biological experiments. Improved tracking performance in terms of precision (up to 11%), recall (up to 8%), ability to correctly capture all cell division events, and computation time (up to nine times reduction) is achieved.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:29 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.