Cart (Loading....) | Create Account
Close category search window

Enhancing Cognitive Radio dynamic spectrum sensing through adaptive learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tekin, C. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Hong, S. ; Stark, W.

Cognitive Radio (CR) networks present a difficult set of challenges due to the fluctuating nature of the available spectrum and wide ranging number of applications, each having different Quality of Service (QoS) requirements. This paper studies the key enabling technologies of Cognitive Radio and makes contributions in two key areas: sensing and learning. We shall first present the software testbed which is developed to implement the Cognitive Radio spectrum sensing system. Next, we derive the mathematical relationship between varying parameters and the QoS and test it on our system to verify the overall performance. Novel learning techniques which determine the statistics of primary user (PU) channel usage over time are proposed to enhance the cognitive radio's dynamic spectrum sensing ability. Using our testbed, we shall demonstrate the feasibility of the innovative adaptive learning algorithms and their ability to increase spectrum sensing efficiency and improve performance over time without feedback from the receiver. We will then proceed to the domain where there are multiple non-cooperative cognitive users (secondary users) selfishly applying the learning algorithms to increase their data rate in channels with varying primary user activity. Finally we conclude with discussions about our results and future work.

Published in:

Military Communications Conference, 2009. MILCOM 2009. IEEE

Date of Conference:

18-21 Oct. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.