By Topic

Adaptive control strategies for open-loop dynamic hopping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Marco Hutter ; Autonomous Systems Lab, Institute of Robotics and Intelligent Systems, Swiss Federal Institute of Technology (ETHZ), Zurich, Switzerland ; C. David Remy ; Roland Siegwart

In the present study, we investigate a control strategy for hopping motions of an articulated leg that is driven by series elastic actuation. A highly compliant spring in the knee joint allows the exploitation of periodic energy storage but creates a major control challenge by severely limiting the bandwidth of closed-loop position or force control. This handicap is intensified by slow actuators, substantial delays, and the kinematic coupling of the articulated design. With classic closed-loop control strategies failing, an adaptive open-loop control algorithm is presented, that, over a series of jumps, estimates the compression of the actuator springs, and gradually modifies the motor inputs in order to minimize slipping and create a purely vertical motion.

Published in:

2009 IEEE/RSJ International Conference on Intelligent Robots and Systems

Date of Conference:

10-15 Oct. 2009