By Topic

Linear-projection-based classification of human postures in time-of-flight data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Folker Wientapper ; Department for Virtual and Augmented Reality, Fraunhofer IGD, Darmstadt, Germany ; Katrin Ahrens ; Harald Wuest ; Ulrich Bockholt

This paper presents a simple yet effective approach for classification of human postures by using a time-of-flight camera. We investigate and adopt linear projection techniques such as Locality Preserving Projections (LPP), Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA), which are more widespread in face recognition and other pattern recognition tasks. We analyze the relations between LPP and LDA and show experimentally that using LPP in a supervised manner effectively yields very similar results as LDA, implying that LPP may be regarded as a generalization of LDA. Features for offline training and online classification are created by adopting common image processing techniques such as background-subtraction and blob detection to the time-of-flight data.

Published in:

Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on

Date of Conference:

11-14 Oct. 2009