By Topic

Multipolarization Microwave Scattering Model for Sahelian Grassland

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Monsivais-Huertero, A. ; Lab. d''Etudes et de Rech. en Imagerie Spatiale et Medicale, Univ. Paul Sabatier, Toulouse, France ; Sarabandi, K. ; Chenerie, I.

A coherent scattering formulation is developed for radar remote sensing of Sahelian grassland. This African vegetation is mainly composed of annual grass and shrubs. In the proposed procedure, first, a temporal model for generation of grass and shrub structures, which includes important realistic botanical information, is implemented. Because we develop a coherent scattering model, preserving the relative position of plant elements in a statistical manner as accurately as possible is very important. Shrubs are reproduced using cylindrical elements which represent trunks, branches, and thin green stems that function as leaves for these shrubs. Their crown shape is highly irregular, but for the most part can be encompassed in an ellipsoidal or cylindrical volume; on the other hand, the grass is represented as a set of cylindrical stalks and blade leaves. The scattered power from each grass element is added because multiple scattering among adjacent elements can be neglected at microwave frequencies. We calculate the soil scattering using the Integral Equation Method and neglect the soil volume scattering which may become significant for dry soil condition at high incidence angles. Backscatter statistics are acquired via a Monte Carlo simulation over a large number of realizations. The accuracy of the model is verified using measured data acquired by the C-band environmental satellite advanced synthetic aperture radar instrument at different incident angles.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 3 )