By Topic

Overcoming Early-Life Failure and Aging Challenges for Robust System Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Li, Y ; Stanford University, Stanfod ; Mitra, S ; Gardner, D ; Kim, Y
more authors

The biggest challenge in designing robust systems is to minimize the costs of error detection. Most existing error detection techniques suffer from high power and performance costs, and / or additional design complexity. Circuit failure prediction, together with CASP on-line diagnostics, enable design of robust systems that can effectively overcome reliability challenges associated with early-life failures and aging. The key attractive feature of such an approach is its significantly reduced power cost compared to traditional error detection. It also opens up new research opportunities across multiple abstraction layers (circuit, architecture, virtualization/OS, and applications) for designing optimized robust systems with respect to reliability requirements while balancing power, performance, area, and design complexity constraints. Such global optimization is essential for robust systems of the future.

Published in:

Design & Test, IEEE  (Volume:PP ,  Issue: 99 )