By Topic

Selection of a Fault Model for Fault Diagnosis Based on Unique Responses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pomeranz, I. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Reddy, S.M.

In this paper, we describe a preprocessing step to fault diagnosis of an observed response obtained from a faulty chip. In this step, a fault model for diagnosing the observed response is selected. This step allows fault diagnosis to be performed based on a single fault model after identifying the most appropriate one. We describe a specific implementation of this preprocessing step based on what is referred to as the unique output response of a fault model. As an example, we apply it to the diagnosis of multiple stuck-at faults, selecting between single and double stuck-at faults as the fault model for diagnosis. Experimental results demonstrate improvements compared to diagnosis based on single stuck-at faults, and compared to diagnosis based on both single and double stuck-at faults. We also discuss the use of a subset of double stuck-at faults for diagnosis, and the application of the proposed preprocessing step with other fault models.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:18 ,  Issue: 11 )