By Topic

Enhanced Hole Transport in Short-Channel Strained-SiGe p-MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gomez, Leonardo ; Microsyst. Technol. Labs., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Hashemi, P. ; Hoyt, J.L.

Hole mobility and velocity are extracted from scaled strained-Si0.45Ge0.55 channel p-MOSFETs on insulator. Devices have been fabricated with sub-100-nm gate lengths, demonstrating hole mobility and velocity enhancements in strained- Si0.45Ge0.55 channel devices relative to Si. The effective hole mobility is extracted utilizing the dR/dL method. A hole mobility enhancement is observed relative to Si hole universal mobility for short-channel devices with gate lengths ranging from 65 to 150 nm. Hole velocities extracted using several different methods are compared. The hole velocity of strained-SiGe p-MOSFETs is enhanced over comparable Si control devices. The hole velocity enhancements extracted are on the order of 30%. Ballistic velocity simulations suggest that the addition of (110) uniaxial compressive strain to Si0.45Ge0.55 can result in a more substantial increase in velocity relative to relaxed Si.

Published in:

Electron Devices, IEEE Transactions on  (Volume:56 ,  Issue: 11 )