Cart (Loading....) | Create Account
Close category search window
 

A proposed life cycle forecasting model of complex recycling technical systems by implementing neural super network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yaghi, K.A. ; Dept. of Manage. Inf. Syst., Appl. Sci. Private Univ., Jordan ; Abu-Dawwas, W.A.

The purpose of this paper is to increase the efficiency of functionality and reliability of complex recycling technical systems (CRTS) community, through improving the control quality of their life cycle. Automated control system (ACS) on the basis of neural super-network learning for forecasting damages and ensuring its information representation for learning was proposed. In the paper it was suggested an architecture and a method of learning of a neural super-network for forecasting the progress of CRTS community life cycle.

Published in:

Networked Digital Technologies, 2009. NDT '09. First International Conference on

Date of Conference:

28-31 July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.