By Topic

Cooperative material handling by human and robotic agents: module development and system synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Adams, J.A. ; GRASP Lab., Pennsylvania Univ., Philadelphia, PA, USA ; Bajcsy, R. ; Kosecka, J. ; Kumar, V.
more authors

Presents a collaborative effort to design and implement a cooperative material handling system by a small team of human and robotic agents in an unstructured indoor environment. The authors' approach makes fundamental use of the human agents' expertise for aspects of task planning, task monitoring, and error recovery. The authors' system is neither fully autonomous nor fully teleoperated. It is designed to make effective use of the human's abilities within the present state of the art of autonomous systems. The authors' robotic agents refer to systems which are each equipped with at least one sensing modality and which possess some capability for self-orientation and/or mobility. The authors' robotic agents are not required to be homogeneous with respect to either capabilities or function. The authors' research stresses both paradigms and testbed experimentation. Theory issues include the requisite coordination principles and techniques which are fundamental to a cooperative multiagent system's basic functioning. The authors have constructed an experimental distributed multiagent-architecture testbed facility. The required modular components of this testbed are currently operational and have been tested individually. The authors' current research focuses on the agents' integration in a scenario for cooperative material handling

Published in:

Intelligent Robots and Systems 95. 'Human Robot Interaction and Cooperative Robots', Proceedings. 1995 IEEE/RSJ International Conference on  (Volume:1 )

Date of Conference:

5-9 Aug 1995