Cart (Loading....) | Create Account
Close category search window
 

Density of States-Based DC I V Model of Amorphous Gallium–Indium–Zinc-Oxide Thin-Film Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Jun-Hyun Park ; Sch. of Electr. Eng., Kookmin Univ., Seoul, South Korea ; Sangwon Lee ; Jeon, Kichan ; Sunil Kim
more authors

The density of states (DOS)-based DC I-V model of an amorphous gallium-indium-zinc oxide (a-GIZO) thin-film transistor (TFT) is proposed and demonstrated with self-consistent methodologies for extracting parameters. By combining the optical charge-pumping technique and the nonlinear relation between the surface potential (phiS) and gate voltage (V GS), it is verified that the proposed DC model reproduces well both the measured V GS-dependent mobility and the I DS-V GS characteristics. Finally, the extracted DOS parameters are N TA = 4.4 times 1017 cm-3 middot eV-1, N DA = 3 times 1015 cm-3 middot eV-1, kT TA = 0.023 eV, kT DGA = 1.5 eV, and EO = 1.8 eV, with the formulas of exponential tail states and Gaussian deep states.

Published in:

Electron Device Letters, IEEE  (Volume:30 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.