Cart (Loading....) | Create Account
Close category search window
 

On the Densest MIMO Lattices From Cyclic Division Algebras

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vehkalahti, R. ; Lab. of Discrete Math. for Inf. Technol., Turku Centre for Comput. Sci., Turku, Finland ; Hollanti, C. ; Lahtonen, J. ; Ranto, K.

It is shown why the discriminant of a maximal order within a cyclic division algebra must be minimized in order to get the densest possible matrix lattices with a prescribed nonvanishing minimum determinant. Using results from class field theory, a lower bound to the minimum discriminant of a maximal order with a given center and index (= the number of Tx/Rx antennas) is derived. Also numerous examples of division algebras achieving the bound are given. For example, a matrix lattice with quadrature amplitude modulation (QAM) coefficients that has 2.5 times as many codewords as the celebrated Golden code of the same minimum determinant is constructed. Also, a general algorithm due to Ivanyos and Ronyai for finding maximal orders within a cyclic division algebra is described and enhancements to this algorithm are discussed. Also some general methods for finding cyclic division algebras of a prescribed index achieving the lower bound are proposed.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 8 )

Date of Publication:

Aug. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.