Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

On Topology Reconfiguration for Defect-Tolerant NoC-Based Homogeneous Manycore Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lei Zhang ; Key Lab. of Comput. Syst. & Archit., Chinese Acad. of Sci., Beijing, China ; Yinhe Han ; Qiang Xu ; Xiao wei Li
more authors

Homogeneous manycore systems are emerging for tera-scale computation and typically utilize Network-on-Chip (NoC) as the communication scheme between embedded cores. Effective defect tolerance techniques are essential to improve the yield of such complex integrated circuits. We propose to achieve fault tolerance by employing redundancy at the core-level instead of at the microarchitecture level. When faulty cores exist on-chip in this architecture, however, the physical topologies of various manufactured chips can be significantly different. How to reconfigure the system with the most effective NoC topology is a relevant research problem. In this paper, we first show that this problem is an instance of a well known NP-complete problem. We then present novel solutions for the above problem, which not only maximize the performance of the on-chip communication scheme, but also provide a unified topology to Operating System and application software running on the processor. Experimental results show the effectiveness of the proposed techniques.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:17 ,  Issue: 9 )