Cart (Loading....) | Create Account
Close category search window
 

Direct measurement of Urbach tail and gap state absorption in CuGaSe2 thin films by photothermal deflection spectroscopy and the constant photocurrent method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Meeder, A. ; Hahn-Meitner-Institut GmbH, Glienicker Strasse 100, D-14109 Berlin, Germany ; Marron, D.Fuertes ; Rumberg, A. ; Lux-Steiner, M.Ch.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1501745 

The applicability of photothermal deflection spectroscopy (PDS) and the constant photocurrent method (CPM) to chemical vapor deposited and physical vapor deposited CuGaSe2 (CGSe) thin films is investigated. Process dependent variations in direct band-gap energies, Urbach tail widths, bulk and surface defect densities of the films are given as a function of composition. Differences in the PDS and CPM absorption spectra of more than one order of magnitude are found. Using the standard a-Si theory of PDS and CPM analysis, a two-layer system consisting of a defect-rich near-surface layer and a less defective bulk layer is found in device-quality films. Optical improvements due to the Ga+Se annealing step as a second stage of the growth process result in a reduced bulk defect density while the near-surface defect density remains unchanged. © 2002 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:92 ,  Issue: 6 )

Date of Publication:

Sep 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.