Cart (Loading....) | Create Account
Close category search window

Two pathways for photon upconversion in model organic compound systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Baluschev, S. ; Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany ; Yakutkin, V. ; Wegner, G. ; Minch, B.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We have studied the phenomenon of photon upconversion in systems of two model compounds as highly efficient blue emitters sensitized with metallated macrocycle molecules in thin films. The bimolecular upconversion process in these systems is based on the presence of a metastable triplet excited state of the macrocycles giving rise to dramatically different photophysical characteristics relative to the other known methods for photon upconversion such as two-photon absorption, parametric processes, second harmonic generation, and sequential multiphoton absorption. The chosen blue emitter molecules have suitably positioned triplet levels: in the case of an oligofluorine—essentially higher and in the case of diphenylanthracene—lower than the sensitizer porphyrin platinum triplet level and thus two excitation pathways for photon upconversion were observed and investigated.

Published in:

Journal of Applied Physics  (Volume:101 ,  Issue: 2 )

Date of Publication:

Jan 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.