Cart (Loading....) | Create Account
Close category search window

Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Koleske, D.D. ; Sandia National Laboratories, Albuquerque, New Mexico 87185 ; Fischer, A.J. ; Allerman, A.A. ; Mitchell, C.C.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Ultraviolet light emitting diodes (LEDs) have been grown using metalorganic vapor phase epitaxy, while monitoring the 550 nm reflected light intensity. During nucleation of GaN on sapphire, the transition from three-dimensional (3D) grain growth to two-dimensional (2D) coalesced growth was intentionally delayed in time by lowering the NH3 flow during the initial high temperature growth. Initially, when the reflectance signal is near zero, the GaN film is rough and composed of partly coalesced 3D grains. Eventually, the reflected light intensity recovers as the 2D morphology evolves. For 380 nm LEDs grown on 3D nucleation layers, we observe increased light output. For LEDs fabricated on GaN films with a longer recovery time an output power of 1.3 mW at 20 mA current was achieved.

Published in:

Applied Physics Letters  (Volume:81 ,  Issue: 11 )

Date of Publication:

Sep 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.